Unsteady State ModelWhite River Comp Study

Presenter: (Louie) L. Yu Lin

Title: Hydraulics Engineer

Memphis District

Date: August 23, 2010

Objectives

 Develop Unsteady State Model Using Hec-RAS Model

 Support the White River Comprehensive Study

Procedures

- Develop GIS Based Information
- Conduct Field Study
- Perform Hyro-Survey
- Collect Gage Stage/Flow Data
- Develop Cross Sections
- Build Hec-RAS Model
- Calibrate Model

Unsteady State Model Hec-RAS

Conservation of Mass

Conservation of Momentum

Conservation of Energy

$$\rho \frac{\partial A_T}{\partial t} \Delta x = \rho \left[\left(Q - \frac{\partial Q}{\partial x} \frac{\Delta x}{2} \right) - \left(Q + \frac{\partial Q}{\partial x} \frac{\Delta x}{2} \right) + Q_I \right]$$

$$\frac{\partial A}{\partial t} + \frac{\partial (\Phi Q)}{\partial x_c} + \frac{\partial [(1 - \Phi)Q]}{\partial x_f} = 0$$

$$\frac{\partial Q}{\partial t} + \frac{\partial (\Phi^2 Q^2 / A_c)}{\partial x_c} + \frac{\partial ((1 - \Phi)^2 Q^2 / A_f)}{\partial x_f} + gA_c \left[\frac{\partial Z}{\partial x_c} + S_{fc} \right] + gA_f \left[\frac{\partial Z}{\partial x_f} + S_{ff} \right] = 0$$

GIS Information

- 2006 Aerial Photos
- U.S.G.S Quad Maps
- White River Center Line
- White River Overbank
- White River Flowlines (1 2 year flowlines)

Field Study (2008-2009)

Hydro-Survey (2008-2009)

Add XYZ with Aerial Photo

Digital Elevation Model White River

- Convert Hydrologic Datum (Low Water Reference Plane) to Geodetic Datum (NGVD)
- Combine All Points in Accordance with Daily Gage Reading
- Create White River DEM

Create Master DEM

Collect U.S.G.S DEM

Compile White River DEM

Mosaic both DEMs Using ArcInfo

Cross Sections

 Develop Cross Sections Including River Valley and Overland

 Present Water Flow through Channel and Overland

Geo-RAS Model

Develop One-Dimensional Hydraulics
 Model for the White River

Create XYZ in ArcInfor

Export to RAS Model

Cross Section Profile

Other Features

Levee Systems

Bridges

Top Banks

Frequency and Duration Analyses

 Gage Data – Mississippi River Junction, Clarendon, DeVall Bluff, DesArc, Georgetown, Augusta, and Newport (1965-2009)

 Supermodel – Little Rock District (1940-2009)

(Continued)

■ 1, 2, 5, 10, 25, 50 and 100 Year Frequency

Stage Analysis

Statistical Software Package (Hec-SSP)

Data Storage System, or HEC-DSSVue

Gage Data

Supermodel

Frequency Analysis Hec-SSP

Stage Calibration

Comments and Question?

